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Excitation of Surface Waves on a Unidirectionally

Conducting Screen*

S. R. SESH.ADRIt, SENIOR MEMBER, IRE

Summary-The excitation of plane surface waves by a line

source on a unidirectionally conducting 1) infinite and 2) semi-
infinite screen is considered. The conditions for the existence of the

surface wave and the optimum location of the line source for obtain-

ing the highest efficiency of excitation is determined.

INTRODLTCTION

A

UN] DIRECTIONALLY conducting surface is

one which is perfectly conducting in a given

direction and is insulating in the perpendicular

direction. It is an idealization of a screen composed of

closely-spaced parallel wires such that the radii of the

wires and the spacing between them are small compared

to wavelength. Diffraction problems involving uni-

directionally conducting screens have received con-

siderable attention in recent times, starting with the

work of Toraldo di Francial who studied the problem

of diffraction of a plane wave by a small circular disk

composed of fine parallel wires. Karp2 has treated the

problem of diffraction of a plane wave by a semi-infinite

unidirectionally conducting half-plane. Hurd$ has

treated the same problem that has been treated by

Karp using Fourier transform methods and has noted

the existence of a surface wave field near the unidirec-

tionally conducting half-plane. In this paper, the prob-

lem of excitation of a surface wave by a line source on

a unidirectionally conducting infinite and semi-infinite

screen is investigated. The optimum location of the line

source for obtaining the highest efficiency of excitation

is determined.

EXCIT.\TION OF SLTRFACE WAVES ON A UNI-

DIRECTIONALLY CONDLTCTING SCREEN

Consider a unidirectionally conducting screen located

in the xy-plane where x, y, 2 form a right-handed

rectangular coordinate system. The screen is assumed

to be conducting in the ~ direction and insulating in the
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q direction, where

~=xcosa+y sina

q= —xsina+ycoscr

2=2, o<a <T/2. (1)

An electric current line source is located at x =0, z= d

and is parallel to the y axis. It may be represented as

J = ja(x)a(z – d). (2)

In the region exterior to the screen and the source,

the electric and magnetic fields satisfy the time har-

monic Maxwell’s equations

f7x E=ikH

vXH=–ikE, (3)

and on the screen the following boundary conditions are

satisfied

Ef(x, y, o) ==o (4)

Hf(z, y, o+) = H$(ct,y, 0-) (5)

El(x, y, 0+) = E,(*, y, o-). (6)

The problem is two-dimensional and the field quanti.

ties are independent of y. Let Ei, Hi denote the fields

due to the line source in the absence of the screen and

B, 1+ are the additional fields produced due to the

presence of the screen. Hence

E=&+E8

H=H~+Hs. (7)

Both the incident and the scattered fields are con-

veniently derived from the vector potential A using (3)

and the relation

H=vx A. (8)

The incident vector potential A; due to the current

source is entirely in the y direction and in view of (2),

(3) and (8) it satisfies ‘the following differential equation

The solution of (9) gives for the incident vector potential
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where

~=+~~ k>{

~=+i~[~–kz k<(. (11)

~ defined by (11) should not be confused with the co-

ordinate denoted by the same letter in (l). On account

of the unidirectional conductivity, the current on the

screen and hence the vector potential AS(Z, z) which

gives rise to the scattered fields are in the direction

~ only.

in view of (3) and (8) it follows that

[ 1;+ :;+k“ A’($, z) = o.

Hence, As (x, z) may be represented as follows,

From (3), (8) and (1), it can be derived that

H<. = ()

H,’ = + A’(.t, Z)
H,s = sin a ~V AS(X, z)

“( ‘)
E~s = ~ k’ + COS2a ~ AS(X, z)

d2&.s=_L cos a sin a ~ .4’(*, z)
k

(12)

(13)

(14)

In view of (7), (13), and (14), boundary conditions (5)

and (6) are automatically fulfilled. The boundary con-

dition (4) will enable the determination of ~({). From

(13) and (14), it is found that

From (10), (8) and (3), it can be shown that

Setting E$s(x, z) +Ei(.v, z) = O for z = O yields the expres-

sion for ~(f) which together with (13) gives

.Z>O

From (10) and (17), all the field quantities can be

obtained using (8), (3), and (l). However, since the

field quantities are all independent of y, it is convenient

to derive the field quantities from the y components of

the electric and magnetic fields which are easily evalu-

ated from (10), (17), (8), (3), and (l). The result is

1) –~<z<o

2) O<z<d

.e@f+&rd~ (19a)

. e,<,+zt(z+d)d{, (20b)

The contour for the integrals in (18)–(20) is along the

real axis in the ~-plane indented above the singularities

at — k sec a and — k; and below the singularities at k,

and k sec a. For x >0, the integrals may be evaluated

by closing the contour in the upper half of the r-plane

as shown in Fig. 1. The contribution to the integrals is

easily shown to be the sum of the residue at the pole

~= k sec CYand a branch-cut integral.

mk; .k sec a
Re~

z <0. (17) Fig. l—Contour of integration in the f plane.
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The value of the branch-cut integral depends on some

inverse power of x and hence, for large x is negligible

compared to the contribution due to the pole. Hence,

for positive, large x, it results that for z <O

k sin a
EUS(X, z) == – __ ~tk sec Gilt tan .(.—d)

4

ik sin a
H;(x, z) = — ~tk s.c e+k tm a(z—d)

4

and for z >0

k sin a
fl~’(.Y, z) = — ——_ ~zk se, .,–k tw a(:+d)

k

ik sin a
Hv’(x, z) = – —— ~%~sec aL—k tan cz(z+d) (21)

k

It is evident that. (21) represents a S1OW wave propa-

gating in the x direction with a phase velocity which is

cos a times the free space velocity and is attenuated in

the z direction as e-~l ‘It”n “. It is easily shown with the

help of (1) and (3) that the surface wave field in (21)

has no $ component of the electric and magnetic field.

The concentration of the energy in the surface wave

near the surface increases as a is increased. Further it

is clear from (21) that the field components of the sur-

face wave represent a right circularly polarized wave for

z <O and a left circularly polarized wave for z> O. The

possibility of circularly polarized surface waves propa-

gating along unidirectionally conducting sheets has

been discussed recently by Rumsey.J

In order to find out the region of physical space where

the surface wave in (21) is present, introduce the trans-

formation

{=kcosr. (22)

With (22), (18)--(20) become

1) –W<z<o

S k sinz r
E.(X, z) = ; – _—— —

c 2(cos27 – secz a)

.e,k[o 00s ,—(z—lz) Sln rl& (2.3a)

1

s

k tan a sin T
~d~, ~) = X – ——

_—

c 2(cosZ T – secz a)

.eik[~ .0S 7–(2–d\

2) O<z<d

.etk[. co, T+!l .,n ,]d7

“n ‘]d~. (23b)

tan~ ~ykz 5,11 T k

(COS2T – see’ a) 1 7

(24a)

4 V. H. Rumsey, “A new way of solving Maxwell’s equations, ”
IRE TRANS. 01-.JANT~XNAS .%~D FROP~GATICIN, VOI. .XP-9, pp. 461-
465; September, 1961.

k tan a sin r
HU(”K, z) = ; sc ~(cosl ~ — secz ~)

.etk[c cos ,+(z+d) sin rldr. (24b)

3) w <z<d

1 S[ ~an2~eikd sin r k

J!3,(.K, z) = ~ e-’kd “i”’+ ———

. (cos’ T – see’ a)-1 7

1

s

k tan a sin TI<,,(.Y,s)=—
27r . 2(cos2 r – see’ a)

. e~k[., cofi T+(z+,l) sin rld~. (25b)

The contour c in (23)–(25) is shown in Fig. 2. The

asymptotic form of the field transmitted through the

screen is obtained by performing a saddle-point evalua-

tion of the integrals [(23a) and (23b) ]. The saddle

point which lies in the interval O <r” <r is given by

The appropriate contour through the saddle point is

obtained by setting the imaginary part of the phase

ik [x cos 7 — (z —d) sin r] equal to its value at the saddle

point ~ = 7.. For the saddle contours, it is found that

~1 = To + coS–l (see lzTJ. (27)

By requiring that the exponential in the integrand of

(23a) and (23b) vanish at infinity on the contour, it re-

sults that

‘r] = 70 + Cos–l (six ]ZT2) for 7-Z <0

71 = 70 — Cos–l (see krz) for 7-, >0. (28)

T2 m

I
~

I
I

f I
I \ 1

I
I \I1IIII1 TI1
I o

c● pole P~IIIII /\IIIII c
I

II 1!
I

I saddle~’:
contour

Fig. 2—Integration contours in the T-plane x >0.
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The contour c is deformed imto the saddle contour

(28), and the saddle-point evaluation of the integral

in (23a) and (23b) gives the asymptotic form of the

transmitted field. The poles of the integrand in (23a)

and (23b) occur at PI: 71= O, rz = cos h–l sec a and

Pg: rl = T, rz = –COS h–l sec w For rO = 7/2, the original

contour c can be deformed into the saddle-point con-

tour without crossing the poles. But when TO= O, the

original contour c crosses the pole P1 and the residue of

the integral at this pole must be added to the saddle-

point contribution. In order to find the condition when

the surface wave is present, consider the saddle contour

71 (PI) which passes through the pole. From (28) it fol-

lows that

To(PI) = a. (29)

If To <TO(PJ, the pole is crossed and the surface wave oc-

curs; and if TO>~O(P1) there is no surface wave. Hence,

from (26) and (29), the surface wave is seen to occur if

x>(d —2) cota. (30)

It is immediately seen from (30) that there is no sur-

face wave for a = O, and it occurs for very large values

of x, when a is near zero. For a = 7r/2, the screen be-

haves like a perfectly-conducting screen for a line cur-

rent source in the y direction. But for a close to m/2,

the surface waves are excited at a short distance from

the source and also the energy of the surface waves is

highly concentrated near the surface of the screen. For

x <O, the contour in Fig. 1 has to be closed in the lower

of the ~-plane and the pole ~ = —k sec a will give rise to

a surface wave traveling in the negative .Y direction.

The condition for the existence of the surface wave can

be found in an analogous manner, For z >0, either (24)

or (25) (they will give identical results due to symmetry

in z and d), will lead to similar results. It is verified that

the surface wave is symmetrical about the planes z = O

and x = O, and (30) in the general form may be stated as

follows :

1:~] >(Z+ ]z/) Cots. (31)

EFFICIENCY OF EXCIT.LTION

It is desirable to find the optimum height of the line

source for which the part of the total power input that is

propagated as a surface wave is a maximum. The total

power in the surface wave will be evaluated first. Due

to symmetry, the total power carried by the surface

wave is four times the power carried by the surface

wave in the region x > O; z <O. From (2 1), the total

power in the surface wave per unit width of the screen

is obtained as

J

o

P.=4 i. [@(t, z) x W*(X, Z)]dz
—w

k sin a
— ~—2kd tan e——

4

(32)

The total power radiated in the region – ~ <z <0, is

easily computed by asymptotically evaluating (23). For

this purpose set

x=pcoso

z=p sin%. (33)

[Tsing (33), (23a) and (23b) become

s k sin% T

Eu(.v, z) = : – —–

c 2[cosZ T – secz ~

,etk~ sin Tezkp w. (r+9)dT
(Ma)

1 s k tan a sin T
II.(.Y, 3) = ; –

c 2[cosZ 7 – secz ~

, ~ikd sin re,hp cos (r+ O)d7. (34b)

For kp> >1, (34a) and (34b) are easily evaluated

asymptotically with the result

~,(kp–w14) k sin% 0
E,(X, z) = —

~2rkp 2(sec’ a – COS’8)
e-i’~ “n 8 (35a)

~L(kP–T/4) k tan CYsin $
H,(Z, z’) = — e-tkd ‘in ‘. (35b)

V2mkp 2(sec’ a – COS’0)

Using (33) and (31), it is easily shown that for kp>>l

Hp=O; Ho= EU; E,= O; E,=– HU. (36)

Hence, the outward power flow per unit area at angle

O is obtained from (35a) and (35b) as

s=@ Ex H*= IE. [’+I H.]’

k sin? R
——

Smp (secz a – COS’ d) “
(37)

Therefore, the total power radiated per unit width of

the screen in the region – m <z< O is obtained as

s‘k sinz 0
pl, = —–

, 87rp (see’ a – COS’0)
pd%

k

f

27 sin2 $
do.

16r o (see’ a – COS219)
(38)

B~- setting w= eid in (38) and calculating the sum of

the residues of the poles of the resultant integrand

within the unit circle, (38) may be evaluated with the

result

k
P,r=~ (1 – sins). (39)

It is evident that (39) represents the total power trans-

mitted through the unidirectionally conducting screen.

When the direction of conductio]l of the screen coincides

with the line source, that is when a = 7r/2, since the

incident electric field is entirely parallel to the direc-

tion of the wires composing the screen, there should be

complete reflection of the incident field from the “line

source and no transmission of power through the screen.
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Also, when the line source is perpendicular to the direc-

tion of the wires of the screen, that is when a = O, there

should be complete transmission of the power from the

line source incident on the screen. These facts are veri-

fied by (39), where k/8 is easily seen to represent the

total power from the line source incident on the screen,

and is equal to hallf the total power radiated from the

isolated line source. Notice that the power radiated in

the region – cc <z <O is independent of the position of

the line source with respect to the screen.

By substituting (33) in (25a) and (25b) and evaluat-

ing the resulting integrals asytnptotically for kp>>l, it

is found that

E,(p, 0)

–-[

~i(L’p-7/4) ~ tan2 ~e~kd sin O

— ~–Lkci ein 8 +

1

—— (N)a)
~2irkp ~ (COS29 – see’ a)

~z(kvT/4) k tan a sin 0
H.(p, @ = —== — e“” ‘in 8. (40b)

~2rkp ‘ 2 (cosz 0 – secz a)

The asymptotic evaluation of (24a) yields the same re-

sult as (40a), as might be anticipated due to the sym-

metry of (24a) and (25a) with respect to z and d. Hence,

(40a) and (4oh) are uniformly valid for z> O. On ac-

count of (36) and (37), the outward power flow per

unit area at au angle 6 is obtained from (40a) and

(40b) as

s’= Iq’+ Ilr.1’

[

i-anz a
.: l+——

(see’ a – COS’0)

2 tan’ a cos (2kd sin O)

1(seal a, – Cosz 0) “
(41)

Hence, the total power radiated per unit width of the

screen in the region z> O becomes

‘k

S[

tanz a
P?, = — l+- ——

087r. (see’ a – COS26)

2 tan’ a cos (2kd sin 0)
—

(see’ a – COS’0) 1
do. (42)

If the second term is evaluated as in (38), (42) re-

duces to

k
P,, = ~ (1 + sin a)

k tanz a

–J

r cos (2kd sin 8)
— do. (43)

4.— , (see’ a – COS’0)

Therefore, using (32), (39) and (43), the launching

efficiency is obtained as

sin ~e—?kd t~~ c

~ “ = —.——. —— (44)

2 sinz CYI
l––— + sin ffe-~hd ““ “

of Surface

where

For two

Waves 283

‘“~

Fig. 3—Efficiency of excitation vs kd.

f

?T/2 cos (2kd sin 0)
1= do.

, (1 – Cos’ a Cos’0)
(45)

values of a, namely a = 30° and 60°, I is

evaluated by numerical integration, and hence, the

value of YU found for the range of values of M from O to

1. It is seen from Fig. 3 that the highest efficiency is ob-

tained for M = O for all values of a. The efficiency of ex-

citation for larger values of a is larger than that for

smaller values of a; it is found that the efficiency cle-

creases with the distance of the line source from the

screen, at a more rapid rate for large values of a. For

kd = O, I becomes 7r/2 sin a and therefore q,,n~x = sin a.

Hence, for kd = O, the value of q. increases as a is in-

creased.

PURITY OF THE SURFACII WAWE FIELD NIMR

THE GUIDING SURNACE

From the expressions for the field components in

(18)-(20), the components of the surface-wave field

(2 1), were obtained by evaluating the residue at the

pole ~ = k sec a. It is now desirable to obtain the leading

term of the asymptotic series of the radiation field in

inverse powers of kx and examine whether or not it can

be nullified by a proper choice of the height d of the line

source from the guiding surface. In (18)–(20), the inte-

gral along the contour embracing the branch cut (Fig.

1), contributes to the radiation field and this contribu-

tion can be obtained as a series in inverse powers of x by

expanding the integrancf in a Taylor series and integrat-

ing term by term. “rhe result is

1) –m<z<O

;boi(kc—r14)

(46a)

(z_ ~)~2eL(k.-=/4)

II,(%, z) = —
(2k.r)’f’~~ tan a “

(46b)

2) o<z<~

(47b;l
‘n-
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In deriving (46) and (47), it is assumed that a >0. An

examination of (46) and (47) reveals that there is no

value of d even for z = O, for which (46) and (47) vanish.

This situation is to be contrasted with that for the

problem of a magnetic line source over an impedance

plane treated by Cullen,5 who has found an optimum

height of the line source which makes the leading term

in the radiation field of O [(Lw-312] vanish for any z.

When z= O and the line source is situated at the opti-

mum height, even the term of O [(k.v)–5/2] vanishes so

that a nearly pure surface wave field is obtained near

the guiding surface. In the present problem, it is found

that the radiation field near the guiding surface is

O [(kx)–tla] and a pure surface wave field in the sense of

Cullen is not obtained.

EXCITATION OI? SURFACE WAVES ON A SEMI-INFINITE

UNIDIRECTIONALLY CONDLTCTIN G SCREEN

In this section, it is assumed that the unidirectionally

conducting screen extends only from x = O to x = @

with the line source located at x = a, z = O. The fields

due to the isolated line source are easily seen to be

given by the vector potemtial

Am.

A’(x, Z) = 1 s 2~Lf(c–a)+i:14d~.
27r . . ~

(48)

As before, the scattered fields are derivable from the

vector potential A’(x, z) given in (13). Due to the ge-

ometry, A ‘(x, z), .4’(x, z) are even functions of z and,

hence, it is sufficient to consider only the region z >0.

Boundary conditions (5) and (6) on the screen are seen

to be automatically satisfied with the help of (48), (13)

and (14). Using (15), (48), (7) and (3), it follows that

Since boundary condition (4) gives E:(x7 O) = O for

x >0, it follows from (49) that

‘i COS2a
y (k’ see’ a – ~’)f({)

k sin a
—

2~k2 – {2
e–i~u = u+(~) (50)

where z~+(~) is a function which is regular in the upper

half-plane Im ~> – Im 2. Further, from (13) and (14), it

is found that

1
H,”(%, z) = —

2?r f
i$~(~)e;~’+z~zd~. (51)

Since A‘ (x, z) = A ‘(x, —z), it is seen from (14) that

H’,’(x, O) =0 for x <O.

5A. L. Cullen, “The excitation of plane surface wa~-es, ” Proc.
IEE, vol. 101, pt. 4, p. 225; February, 1954. (Monograph No. 93 R.)

Hence, it is obvious from (51) that

<=F”f(t) = L-({) (52)

where L–(r) is a function regular in the lower half-plane

Im ~ < Im k. Eliminating j(~) from (50) and (52) and

rearranging the resulting expression, it may be derived

that

i cos2 a
~ (k sec a – {) ~L~

k sin a

[

e–bra eika sec a

— —
1

2(kseca+~) ~k–~ /k+kseca_j

~+(r)tik + f +
k sin ~eik~ .,. a

—

(k sec a + r) 2(kseca+f){k+kseca
. (53)

It is seen that the left side of (53) is regular in the

lower half-plane Irn ~ < Im k and the right side is regular

in the upper half-plane Irn ~> — Im k. Both are regular

in the strip I Im {1 < Im k. Hence, by the arguments of

the Wiener-Hopf procedure, (53) is seen to define an

integral function. In order to get a unique solution, the

current at the end of the wires composing the screen

should be required to vanish as Xl/z. It therefore follows

from (51) and (52) that L–(~)x~–3/2 as I {1 ~ co. Hence,

from the left side of (53), the integral function is seen

to vanish as ~~ IX ; therefore, its value is zero. From

(53), (52) and (13), it is easily derived that

kz sin ~ ekfs-l-~{.

A’(*, z) = ~
J27r 2i COS2a~k + ~ (k’ see’ a – (2)

(

e—,{a eika sec a

.

)

dj-.

v’k-{-~k+kseca
(54)

From (10) and (54), Eu(x, z) and H. (x, z) are obtained

with the help of (8), (3) and (1) with the result

mS[ ke–ira

E.(X, z) = ~ – —
2T –. Zg

k3 tan2 ~eika see a

—

2v’k + r(kz secz a – rz)~k + k sec a 1

. e.~+$~sd{

s

. k3 tanz ~e4(X-LZ)+ZEZ

+~ — d~
27 -m 24k2 – r2(k2 sec2 a – ~’)

(55)

lms k2 tan a ~k–~
Il,(x, z) = ~ _ –

. Z(kz sec2 a – ~2) ~k + k sec a

. e,ha sec mebrr+itzd{

I@ k2 tan a
e’~(r-u)t’~’d~. (56)

+ ~ ~_@ 2(k2 sec2 a – t’). .



Y962 Seshadri: Excitation

The contour for the integrals in (55) and (56) is

shown in Fig. 1. The first integral in (55) and (56) is

evaluated by closing the contour in the upper half-

plane for x >0 and in the lower half-plane for x <0.

Similarly, the second integral in (55) and (56) is evalu-

ated by closing the contour in the upper half-plane for

x > a and in the lower half-plane for x <a. The contribu-

tion to each integral arises from a pole and a branch-cut

integral and the surface-wave term, as before, is given

by the residue at the poles. Taking the contribution of

only the poles, the evaluation of (55) and (56) yields

Eu’(x, z) == o

H,’(x, z) := o for–~<%<0 (57)

k sin a
Eu’(x, z) = – __ ~i?+a sec u—k t.. .2

4

“[ dI–cosa
~—ik se. a. _ ~ ~tk sec czz

l+cosa 1

ik sin a
H,’(X, :) = – ~ika ..,3 ~—k tan a,

4

“[ dr– Cosz
~—tk S(,CIKV _ ~“ ~ik sec ax

I+cosck! 1
for O<x<a (58)

k sin a
E.’(X, z) == – ~,k see c%z-k tan cza

4

“[

‘1 – Cosz
~—ika f3CC LT — i

/ 1

~,ka sec a

I+cosa

ik sin a
HVS(X, Z) = — —_— ~bk sec a.–k tan .,

4

———

“[ d

1–COSCX
~—ika see e _ i ~ika sec a

l+ COSCY 1

fora<x <m. (59)

An examination of (5 7)–(59) reveals that a surface

wave starts at x = a and travels in both the positive and

negative x directions with a phase velocity less than the

free space velocity by a factor of cos a. A part of the

surface wave traveling in the negative x direction gets

reflected at x = O, the reflection coefficient being

d1–COSCX
—i

I+cosa

and the remaining part is converted into the radiation

field. As before, it is evident from (57)-(59), (1), and (3)

that the Eg (x, z) = 27$(x, z)= O for the surface wave field.

It is now desired to calculate the total power trans-

mitted by the surface wave and that carried by the

radiation field per unit width of the screen and thus
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calculate the efficiency of excitation. From (3) and (59)

the total power carried by the surface wave per unit

width of the screen is obtained as

J
.

r, = i \z(.Y,z) x IiP*(x, Z)]dz

o

k sin a

[

l–cosa
=— — 1+

16 l+cosa

dl–cosa
+2

1
sin (2ka sec a) .

I+cosa

It is obvious that P, is a maximum for a given a

2ka sec a = r/2. This corresponds to the situation

(60:)

when

when

the surface wave traveling in the – x direction, after

getting reflected at x = O, arrives at x = a in phase with

the surface wave traveling in the +x direction.

To calculate the total power carried by the radiation

field for unit width of the screen, it is convenient first to

substitute (22) and (33) in (55) and (56) with the result

ke-,ka co. ,

_E.(p, 0) = : S[ 2—

k tan’ ae’k” “c ail – cos r eik, ~0, ~,_,jdr
+-

2~1 + sec a(sec’ a – cos’ 7-)1
e—aka 00s T

+ +J –+‘anza(sec2 a – COS’ T)

. eik~ CO, (d–,)~r (61)

Sk tan a sin T V’1 – Cos 7
13v(p, !3) = ~ —

27r 2 til + sec a (sec2 a – cos27)

. eika ‘e” ~eikp c“’ (8-’)dT

k tan a sin r

‘;J ‘~ (see’a– COS’T)

. e—ika COB ~eikp 008 (6 —r)drm (62)

For kp>>l, (61) and (62) are evaluated asymptotically

to yield the following result for the radiation field:

~i(kru/4) k

[

sin2 0
Eu(p, o) = —

e-ilca sec @

<2rkP ~ (secz a – COS20)

tan2 a 41 – Cos e ,,,6 ,ec ~
+— —

~1 + sec a (see’ a – cos2 O) 1
(63)

e’ CkP–m/Q k tan a sin 0

[

41 – Coso
H,(p, e) = — ——

—

d2rkp 2 /1 + sec a ~c2 a – COS’0)

tan a sin 0
.eikc sec a _ ~—;kca COS 8

1(sec2 a – cos’6) “
(64)



286 IRE TRANSACTIONS ON MICROWAVE THEORY

Hence, the outward power flow per unit area at an angle

O is obtained from (36), (63) and (64) as

.s=j$. ExH*=]E. )’+]i7u]’

k

[

sin2 0
.— .

87rp (see’ a – COS20)

tan2 CY (1 – Cos e)
+

(1 + sec a) ~ec’ a – cos’19j 1
. (65)

Therefore, the total radiatecl in the region z >0 is o1>-

tained as

P,=~
H

. sin2 O

87r 0 (see’ a – COS219)

tan2 a (1 – Cos 0)
+

(1 + sec a) (see’ a – cos %) 1
dO. (66)

By evaluating the integral in (66), in the same manner

as in (58), it is found that

[

sin a
P,=: l–

1(1 + Cos a) “
(67)

Using (67) and (60), the launching efficiency is ob-

tained as
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Fig. 4—Eficiency of excitation vs a.

sin ffr. 1 – cosa7~

July

qm%x . —

sin a sin a

[

I–cosa 2
l– +— l+———

l+cos cl! 2 sin a 1

sin a(l + sin a)
.

c+ COSCY)(2 – COSC2) “
(69)

The value of fi.,:,X is plotted in Fig. 4 as a function of a.

It is seen that Z.,.X increases nearly linearly with a.

It is to be noted that it is not physically meaningful to

have the line source in the plane of screen for a = 7r/2.

———
sin a

[

I–cosa

d

l–cosa
— 1+

2
+2 sin (2ka sec a)

l+cosa I+cosa 1~= —— . (68)
sin Q sin a

[

I+cosa /1 – Cos a
l– +— 1+

l+ COSCY 2 l+ COSCY
+2

‘v
sin (2ka sec a)

l+ COSCY 1
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