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Excitation of Surface Waves on a Unidirectionally
Conducting Screen®

S. R. SESHADRIt, SENIOR MEMBER, IRE

Summary~The excitation of plane surface waves by a line
source on a unidirectionally conducting 1) infinite and 2) semi-
infinite screen is considered. The conditions for the existence of the
surface wave and the optimum location of the line source for obtain-
ing the highest efficiency of excitation is determined.

INTRODUCTION

UNIDIRECTIONALLY conducting surface is
A one which is perfectly conducting in a given
direction and is insulating in the perpendicular
direction. It is an idealization of a screen composed of
closely-spaced parallel wires such that the radii of the
wires and the spacing between them are small compared
to wavelength. Diffraction problems involving uni-
directionally conducting screens have received con-
siderable attention in recent times, starting with the
work of Toraldo di Francia' who studied the problem
of diffraction of a plane wave by a small circular disk
composed of fine parallel wires. Karp? has treated the
problem of diffraction of a plane wave by a semi-infinite
unidirectionally conducting half-plane. Hurd® has
treated the same problem that has been treated by
Karp using Fourier transform methods and has noted
the existence of a surface wave field near the unidirec-
tionally conducting half-plane. In this paper, the prob-
lem of excitation of a surface wave by a line source on
a unidirectionally conducting infinite and semi-infinite
screen is investigated. The optimum location of the line
source for obtaining the highest efficiency of excitation
is determined.

EXCITATION OF SURFACE WAVES ON A UNI-
DIRECTIONALLY CONDUCTING SCREEN

Consider a unidirectionally conducting screen located
in the xy-plane where x, y, 2 form a right-handed
rectangular coordinate system. The screen is assumed
to be conducting in the £ direction and insulating in the
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1 direction, where
£=xcosa-+ ysina
n= —asina+ ycos«
7 = 2, 0<a<n/2. ¢)]

An electric current line source is located at x=0, z=d
and is parallel to the y axis. It may be represented as

J = 95(x)s(z — d). ®)

In the region exterior to the screen and the source,
the electric and magnetic fields satisly the time har-
monic Maxwell’s equations

v X E = ikH
v X H = — i}kE, 3)

and on the screen the {ollowing boundary conditions are
satisfied

Eg(x,5,0) =0 (4)
H$<x7 ¥, 0+) = Hé(x: Y, 07) (5)
Eqy(x, 3, 0%) = Ey(x, 3, 07). (6)

The problem is two-dimensional and the field quanti-
ties are independent of y. Let E?, H? denote the fields
due to the line source in the absence of the screen and
E:, H* are the additional fields produced due to the
presence of the screen. Hence

E=FE+E
H = H'+ H:. (7)
Both the incident and the scattered fields are con-

veniently derived {from the vector potential A using (3)
and the relation

H=v X A. (8)

The incident vector potential A? due to the current
source is entirely in the v direction and in view of (2),
(3) and (8) it satisfies the following differential equation

[i-i* :;-22— + kZJ A%, 5) = — ¥(x)é(z — d).  (9)

dx?
The solution of (9) gives for the incident vector potential

. i
Az, z) = = —_ gitrhitia—dl gg

10
27, 2E (10)
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where
E=+ V- {?
F= o+ iVE (1)
£ defined by (11) should not be confused with the co-
ordinate denoted by the same letter in (1). On account
of the unidirectional conductivity, the current on the

screen and hence the vector potential A¢(x, z) which
gives rise to the scattered fields are in the direction

E>¢
k<.

¢ only.
In view of (3) and (8) it follows that
0? 9?
[—— + — + k2:| As(x,z) = 0. (12)
dz* dz*
Hence, 4¢(x, 2) may be represented as follows,
1
A, = — [ g0yessritiay (13)
27
From (3), (8) and (1), it can be derived that
Heg =0
d
Hy = — As(x, 3)
dz
a
Hp = sin a — A%(x, 2)
dx
E : <k2 + cos® il > As(x, 2)
S = — Cos* o —— (%, =
: k “ dx?
i T
Ep = — " cos o sin « Py A(x, 2)
i 02
B As(x, 2). (14)

0xdz

In view of (7), (13), and (14), boundary conditions (5)
and (6) are automatically fulfilled. The boundary con-
dition (4) will enable the determination of f(¢). From
(13) and (14), it is found that

Ee(s, 2) 1ficosza
(%, 8) = —
: 2w k

From (10), (8) and (3), it can be shown that

(B sec® o — ¢Hf(§)esHElldg. (15)

. 1 ksin o
Ei(x,2) = Z—f — e =g 5 < g (16)
m

2

Setting E¢(x, 2) +Ei(x, ) =0 for =0 yields the expres-
sion for f({) which together with (13) gives

¢ © k% sin o 1

2md o 28 cos?a (§? — k?sec? a)

ez(r+z£(z+ll)d§~

z >0
Ar(x, z) =, s
£ *© jk?sin « 1
. - hewzw%(z*d)dg-
2 J o 28 cos?a (¢F — h?sec?a)
< 0. (A7)
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From (10) and (17), all the field quantities can be
obtained using (8), (3), and (1). However, since the
field quantities are all independent of y, it is convenient
to derive the field quantities from the y components of
the electric and magnetic fields which are easily evalu-
ated from (10), (17), (8), (3), and (1). The result is

1) — o <2<0

1 = kg
J( ) I e 2(§_2 — B2gec? CY) -{_ ( )
,(x 9) 1 @ k% tan « fekG-Dde. (18b)
S, 8) = — — gl d) gy
Y Ird o 2(§2 — E?sec?a)
2) 0<z<d
1 * k k3 tan? aett®
g [ hes e ]
2rd 2% 28(¢* — kP sec® @)
cedt gy (19a)
1 i k? tan o
H, (x,3) =— Bl s —— -
2r J o 2(% — R%sectw)
RGO (19b)
3) d<z<»
1 = B k® tan?® o eit?
Eyx, 2) = — e e — }
2, 28 28(¢% — k?sec? )
Cerketitagy (20a)
1 °° k? tan a
H,(x,3) = — T e 1r sy
2md . 2(8% — ksec?q)
D g (20b)

The contour for the integrals in (18)—(20) is along the
real axis in the {-plane indented above the singularities
at —k sec o and —k; and below the singularities at &,
and & sec a. For x>0, the integrals may be evaluated
by closing the contour in the upper half of the {-plane
as shown in Fig. 1. The contribution to the integrals is
easily shown to be the sum of the residue at the pole
{=Fk sec @ and a branch-cut integral.

Img

—

=

-k seca

Fig. 1—Contour of integration in the ¢ plane.
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The value of the branch-cut integral depends on some
inverse power of x and hence, for large x is negligible

compared to the contribution due to the pole. Hence,
for positive, large x, it results that for 2 <0
ksin a
Eys(x’ Z) = e — gtk sec axtk tan a(z—d)
4
1k sin o
Hys(x, Z) — gtk sec artk tan a(z—d)
and for £>0
ksin a
Ey.v(x’ Z) — e gzk sec ar—k tun a{z+d)
k
tksina
Hys(x, Z) = ek sec ci—k tan oz(z+d)‘ (21)

It is evident that (21) represents a slow wave propa-
gating in the x direction with a phase velocity which is
cos « times the free space velocity and is attenuated in
the z direction as e7#I#1tan 2 [t is easily shown with the
help of (1) and (3) that the surface wave field in (21)
has no £ component of the electric and magnetic field.
The concentration of the energy in the surface wave
near the surface increases as a is increased. Further it
is clear from (21) that the field components of the sur-
face wave represent a right circularly polarized wave for
2<0 and a left circularly polarized wave for 2>0. The
possibility of circularly polarized surface waves propa-
gating along unidirectionally conducting sheets has
been discussed recently by Rumsey.*

In order to find out the region of physical space where
the surface wave in (21) is present, introduce the trans-
formation

§ = kcos. (22)
With (22), (18)—(20) become
1) — o <z<0
1 ksin? 7
B =~ [ - T
2rd ., 2(cos? 7 — sec? @)
.ezk[az cos 7—(z~—d) sin T]dT (23(1)
1 ktan asin 7
Heo)=— [ - = T
27 2(cos® T — sec? @)
_67'Jc[1 cos r—(z—d) sin T]dT. (ZSb)
2) 0<z<d
E ( ) 1 [ . + tanﬁ aezkz s1n T ] k
x’ g) = — e—ikz s T R S
! nd. (cos®T —sec?a) ] 2
.elk[l cos r+d sin T]dT (243)

V. H. Rumsey, “A new way of solving Maxwell's equations,”
IRE TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-9, pp. 461~
465; September, 1961.
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1 kEtanasinr
Hy(.XZ, Z) =
27 . 2(cos’ T — sec? )
. gkl cos T (ztd) sin gy (24b)
3) w<z<d

Ey(x, z) = #f[e tkd sin 7

tan? aeikd sin 7 :l k

(cos2 T — sec? @)

. gk [z cos 74z sin 7] (253)
o) = f kian asin 7
rg) = —
v . 2(cos r — sec? a)
cek [ cos tH(z+d) sin ] Jp (251))

The contour ¢ in (23)—(25) is shown in Fig. 2. The
asymptotic form of the field transmitted through the
screen is obtained by performing a saddle-point evalua-
tion of the integrals [(23a) and (23b)]. The saddle
point which lies in the interval 0 <7, <w is given by

(z—d . (26)

Ty = tan~! —
X

The appropriate contour through the saddle point is
obtained by setting the imaginary part of the phase
ik|x cos T — (3 —d) sin 7] equal to its value at the saddle
point 7=7,. For the saddle contours, it is found that

71 = 79 = cosT! (sec ko). (27

By requiring that the exponential in the integrand of
(23a) and (23b) vanish at infinity on the contour, it re-
sults that

71 = 19 + cos7! (sec fra) for 1o < 0
71 = 19 — cos ! (sec hrs) for . > 0. (28)
T2
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Fig. 2—Integration contours in the r-plane x>0.
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The contour ¢ is deformed into the saddle contour
(28), and the saddle-point evaluation of the integral
in (23a) and (23b) gives the asymptotic form of the
transmitted field. The poles of the integrand in (23a)
and (23b) occur at Pi: 71=0, 7a=cos A sec a and
Py:vi=m, 19= —cos ki sec a. For 7¢=m/2, the original
contour ¢ can be deformed into the saddle-point con-
tour without crossing the poles. But when 70=0, the
original contour ¢ crosses the pole P; and the residue of
the integral at this pole must be added to the saddle-
point contribution. In order to find the condition when
the surface wave is present, consider the saddle contour
71(P1) which passes through the pole. From (28) it fol-
lows that

o(P1) = a. (29)

It 7o <79(P1), the pole is crossed and the surface wave oc-
curs; and if 79>7(P1) there is no surface wave. Hence,
from (26) and (29), the surface wave is seen to occur if

x> (d — %) cot e (30)
It is immediately seen from (30) that there is no sur-
face wave for a=0, and it occurs for very large values
of x, when « is near zero. For a=m/2, the screen be-
haves like a perfectly-conducting screen for a line cur-
rent source in the y direction. But for a close to 7/2,
the surface waves are excited at a short distance from
the source and also the energy of the surface waves is
highly concentrated near the surface of the screen. For
x <0, the contour in Fig. 1 has to be closed in the lower
of the {-plane and the pole { = —k sec « will give rise to
a surface wave traveling in the negative x direction.
The condition for the existence of the surface wave can
be found in an analogous manner, For 2> 0, either (24)
or (25) (they will give identical results due to symmetry
in z and d), will lead to similar results. I't is verified that
the surface wave is symmetrical about the planes z=0
and =0, and (30) in the general form may be stated as
follows:

| 2] > @+ |2]) cot e (31)

EFFICIENCY OF EXCITATION

It is desirable to find the optimum height of the line
source for which the part of the total power input that is
propagated as a surface wave is a maximum. The total
power in the surface wave will be evaluated first. Due
to symmetry, the total power carried by the surface
wave is four times the power carried by the surface
wave in the region x>0; 2<0. From (21), the total
power in the surface wave per unit width of the screen
is obtained as

Iy
P, = 4f & [E(x, 5) X H(x, 2)|dz

k sin «
[ 6—2kd tan o,

4

(32)
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The total power radiated in the region — « <z<0, is
easily computed by asymptotically evaluating (23). For
this purpose set
x = pcoséf
%z = psin 8. (33)
Using (33), (23a) and (23b) become

(52 1 ksin?r
x,3) = — e
Y 27, 2[cos2 T — sec? a]

.ezkd sin Tglkp cos (T+0)dT

Ho(x,2) lf k tan a sin 7
A%, 2) = — —
! 2rd, 2]

cos? 7 — sec? af

(34a)

,eikd sin -reLkp cos (H—B)d,r.

(34b)

For kp>>1, (34a) and (34b) are easily evaluated
asymptotically with the result

e ko—m /8 k sin? @

Ey(x,5) = ——=— —————————— ¢ #dsm i (353)
V2mkp  2(sec® a — cos? )
erWwo—m/ D) k tan o sin @ )

H,(x, 2) = gmtkd sin 8 (35])

V2xkp 2(secta — cos? )
Using (33) and (31), it is easily shown that for ko>>1

HP: 0, He:Ey; E‘,ZO; E(]: —HU' (36)

Hence, the outward power flow per unit area at angle
f is obtained from (35a) and (35b) as

S=pEXH"=|E/]*+ |H,|*
k sin? 6
= - —— (37)

B 8rp (sec? a — cos?6)

Therefore, the total power radiated per unit width of
the screen in the region — « <3< 0 is obtained as

-k sin? @
poo [E e,
o 8mp (sec’a — cos®h)
k 2 sin? ¢

a8. (38)

 16r o (sec’a — cos?f)

By setting w=¢e® in (38) and calculating the sum of
the residues of the poles of the resultant integrand
within the unit circle, (38) may be evaluated with the
result

k

Py, = ry (1 — sin ). (39)
It is evident that (39) represents the total power trans-
mitted through the unidirectionally conducting screen.
When the direction of conduction of the screen coincides
with the line source, that is when a=w/2, since the
incident electric field is entirely parallel to the direc-
tion of the wires composing the screen, there should be
complete reflection of the incident field from the line
source and no transmission of power through the screen.
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Also, when the line source is perpendicular to the direc-
tion of the wires of the screen, that is when a«=0, there
should be complete transmission of the power from the
line source incident on the screen. These facts are veri-
fied by (39), where k/8 is easily seen to represent the
total power from the line source incident on the screen,
and is equal to half the total power radiated from the
isolated line source. Notice that the power radiated in
the region — « <z<0 is independent of the position of
the line source with respect to the screen.

By substituting (33) in (25a) and (25b) and evaluat-
ing the resulting integrals asymptotically for ko>>1, it
is found that

Ey(Pa 6)
ei(kp‘—‘lr/4) k g tan‘Z ae'tk(l sin 8
_ *[6~Lkd sing f A:| (40a)
V2rkp 2 (cos? 8 — sect @)
gtk | tan « sin .
Hy(p, 6) - e grkd sin §_ (4_()b)

\/2—7:13;: 2 (cos?f — sec? @)

The asymptotic evaluation of (24a) yields the same re-
sult as (40a), as might be anticipated due to the sym-
metry of (24a) and (25a) with respect to z and d. Hence,
(40a) and (40b) are uniformly valid for z>0. On ac-
count of (36) and (37), the outward power flow per
unit area at an angle 8 is obtained from (40a) and
(40b) as

S =

Byt + |, |*

tan? o
é;;[l (sec? o — coszﬁ_)
B 2 tan? « cos (2kd sin 0)} (41)
(sec® @ — cos? 6)

Hence, the total power radiated per unit width of the
screen in the region z>0 becomes

Tk
P‘lr:f —*[1
] 871'.

tan® o

(sect o — cos?8)

2 tan? & cos (2kd sin 6)
- m_——w} o, (42)
(sec? @ — cos? 6)
If the second term is evaluated as in (38), (42) re-
duces to

k
P3T=—8-(1—(—sina)

ktan?a [~ cos (2kd sin 6)

dr o (sec®a — cos?f)

9. (43)

Therefore, using (32), (39) and (43), the launching
efficiency is obtained as

sin ae—de tan «

= 14
7o 2 sin? al (+)

+ Sin ae~‘lkd tan «
w
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Fig. 3—Efficiency of excitation vs &d.

where
w12 cos (2kd sin 6)
7 =f s — — o df. (45)
0

(1 — cos? @ cos? 8)

For two values of a, namely a=30° and 60°, I is
evaluated by numerical integration, and hence, the
value of 5y found for the range of values of 2d from 0 to
1. It is seen from Fig. 3 that the highest efficiency is ob-
tained for kd =0 for all values of . The efficiency of ex-
citation for larger values of « is larger than that for
smaller values of «; it is found that the efficiency de-
creases with the distance of the line source {rom the
screen, at a more rapid rate for large values of a. For
kd=0, I becomes 7/2 sin o and therefore 7gug.x=sin a.
Hence, for kd =0, the value of 7, increases as « is in-
creased.

PuriTy or THE SURFACE WAVE FIELD NEAR
THE GUIDING SURFACE

From the expressions for the field components in
(18)—(20), the components of the surface-wave field
(21), were obtained by evaluating the residue at the
pole { =k sec a. It is now desirable to obtain the leading
term of the asymptotic series of the radiation field in
inverse powers of kx and examine whether or not it can
be nullified by a proper choice of the height d of the line
source from the guiding surface. In (18)—(20), the inte-
gral along the contour embracing the branch cut (Fig.
1), contributes to the radiation field and this contribu-
tion can be obtained as a series in inverse powers of x by
expanding the integrand in a Taylor series and integrat-
ing term by term. The result is

1) — oo <z<0
ibeitkerlo)
Ey(r,9) = ~ (462)
(2kx)32+/m tan® «
(é — d)kzeb(kx—rm)
H(x,2) = = - (46h)
(2kx)3/2/7 tan «
2) 0<s<
ther—ri8(1 - 2dzk? tan? a)
E (x,2) = — @TrIO( + 2dak° tan’ o) (47a)
V27 (kx)3? tan? o
o + d k‘lei(kr~1rI4)
H,(x,2) = ( ) (47b)

- (2kx)3/2/7 tan « ‘
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In deriving (46) and (47), it is assumed that «>0. An
examination of (46) and (47) reveals that there is no
value of d even for z=0, for which (46) and (47) vanish.
This situation is to be contrasted with that for the
problem of a magnetic line source over an impedance
plane treated by Cullen,® who has found an optimum
height of the line source which makes the leading term
in the radiation field of 0[(kx)=%2] vanish for any z.
When z=0 and the line source is situated at the opti-
mum height, even the term of 0[(kx)=5/2] vanishes so
that a nearly pure surface wave field is obtained near
the guiding surface. In the present problem, it is found
that the radiation field near the guiding surface is
0[(kx)~*2] and a pure surface wave field in the sense of
Cullen is not obtained.

EXcITATION OF SURFACE WAVES ON A SEMI-INFINITE
UNIDIRECTIONALLY CONDUCTING SCREEN

In this section, it is assumed that the unidirectionally
conducting screen extends only from x=0 to x= o
with the line source located at x=ga, 2=0. The fields
due to the isolated line source are easily seen to be
given by the vector potential

i
Av(x, 2) = s — e o)tz g

18
2w, 2F (48)

As before, the scattered fields are derivable from the
vector potential 4¢(x, z) given in (13). Due to the ge-
ometry, 4%(x, ), A%(x, ) are even functions of z and,
hence, it is sufficient to consider only the region 5>0.
Boundary conditions (5) and (6) on the screen are seen
to be automatically satisfied with the help of (48), (13)
and (14). Using (15), (48), (7) and (3), it follows that

1Ma@=%j[”f“@%Wa—ﬁmn

ksin «
2¢

Since boundary condition (4) gives F:(x, 0)=0 for
x>0, it follows from (49) that

e—z‘ra] eitsHitsdr,  (49)

2 cos?a

(k? sec? @ — {If()
k sin

——— ___ pite — g
o = ) (50

where #+({) is a function which is regular in the upper
half-plane Im { > —Im k. Further, from (13) and (14), it
is found that

1
wm@=;fw@www. (51)

Since A°(x, z)=A4%(x, —z), it is seen from (14) that
Hpg(x, 0)=0 for x<0.

5 A, L. Cullen, “The excitation of plane surface waves,” Proc.
IEE, vol. 101, pt. 4, p. 225; February, 1954. (Monograph No. 93R.)
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Hence, it is obvious from (51) that

VE=Ef(E) = L) (52)

where L—(¢) is a function regular in the lower half-plane
Im ¢ <Im k. Eliminating f({) from (50) and (52) and
rearranging the resulting expression, it may be derived
that

=)
VE=¢

tcos?a

(kseca — §)

e—LI'(l e ika sec a

ksin o l:
2kseca+ ) IvVeE—¢ VB4 Esecal

k sin qetke sec a

2(kseca—+ )k + kseca '

wr(OVE+ ¢

- (kseca+ ) &9

It is seen that the left side of (53) is regular in the
lower half-plane Im { <Im % and the right side is regular
in the upper half-plane Im {> —Im k. Both are regular
in the strip f Im §‘] <Im k. Hence, by the arguments of
the Wiener-Hopf procedure, (53) is seen to define an
integral function. In order to get a unique solution, the
current at the end of the wires composing the screen
should be required to vanish as x/2 It therefore follows
from (51) and (52) that L=({)~{¢ 32 as I{f——)oo. Hence,
from the left side of (53), the integral function is seen
to vanish as {- e« ; therefore, its value is zero. From
(53), (52) and (13), it is easily derived that

Ao, 2) 1 k? sin o elotite
s(x, 5) = — ——
2w 2icos’avk 4 ¢ (B?secta — )

3——1(0 eilm sec a
(o)
VE—¢ AVEA4 kseca

From (10) and (54), E,(x, g) and H,(x, z) are obtained
with the help of (8), (3) and (1) with the result

Ey(x,2) 1 f w[ e
v, 8) = — —
! 2w ., 2t

(54)

B tan? qeie se¢ @
- 2vE + ¢k sec? a — §2)\/m:]
B o
1 - R tan® qetd @tz
TRl i eea® &
{ o k% tan a k-
H,(x,z) = Zf_w o 2(k*seca — %) V%ﬁi‘a
e seo agitrtitzde
1 © k% tan a e emaytitedr  (56)

4+ = ==
2rd _, 2(k?secta — ()
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The contour for the integrals in (55) and (56) is
shown in Fig. 1. The first integral in (55) aud (56) is
evaluated by closing the contour in the upper hali-
plane for x>0 and in the lower half-plane for x<0.
Similarly, the second integral in (55) and (56) is evalu-
ated by closing the contour in the upper half-plane for
x>a and in the lower half-plane for x <. The contribu-
tion to each integral arises from a pole and a branch-cut
integral and the surface-wave term, as before, is given
by the residue at the poles. Taking the contribution of
only the poles, the evaluation of (55) and (56) yields

EfMx,2) =0
H,j(x,3) =0 for — o <5 <0 (57
Esin a i
Eus(x, Z) - - ezka sec a—k tan az
4
1 —cosa
. [e—ik S6C AT . L /‘/ 6Lk sec axr
1+ cosa
tksina
Hya(x’ 5) = — gtk sec a—k tan az
1~ cosa
. I:e—lk S0 AT 1 /‘/ eik sec ar
14 cosa
for0 < x < a (58)
ksin a
Eys(x, Z) - —_ ezk sec ar—k tan az
1 —cosa
. e—ika seca . g —— . ptku seC a
1+ cosa
ik sin o
Hus(x, Z) _— ebk sec ar—k tan az

4

1—cosa
. [6—ika sec a l /‘/___~__, eika sec a
14 cosa

fore < x < . (59
An examination of (57)—(59) reveals that a surface
wave starts at x =a and travels in both the positive and
negative x directions with a phase velocity less than the
free space velocity by a factor of cos a. A part of the
surface wave traveling in the negative x direction gets
reflected at x =0, the reflection coefficient being

. 4/1 — Ccos

—1 e

14 cosa
and the remaining part is converted into the radiation
field. As before, it is evident from (57)-(59), (1), and (3)
that the E:(x, 2) = H¢(x, ) =0 for the surface wave field.
It is now desired to calculate the total power trans-

mitted by the surface wave and that carried by the
radiation field per unit width of the screen and thus
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calculate the efficiency of excitation. From (3) and (59)
the total power carried by the surface wave per unit
width of the screen is obtained as

P, = f & |E(x, 2) X H™(x, 2)]ds
0
ksina[l 1 —cosa
16 14 cosa

1 —cosa .
+ 2 /‘/~——— sin (2ka sec a):| . (60)
14 cosa

It is obvious that P, is a maximum for a given « when
2ka sec ao=m/2. This corresponds to the situation when
the surface wave traveling in the —x direction, after
getting reflected at x=0, arrives at x=¢ in phase with
the surface wave traveling in the -+x direction.

To calculate the total power carried by the radiation
field for unit width of the screen, it is convenient first to
substitute (22) and (33) in (55) and (56) with the result

E ( 0) 1 f [k6~zka cos T
AP 2w 2

ktan® aee sec ey /1 — cos 7

2+4/1 + sec a(sec’ a — cos?7)

] 6ikp cos (0—~1')d7.

1 k

e—zka cos T

— — —tanlg-—-———
27 2 (sec® a — cos?T)
.6ikp cos (G—T)dT (61)
tan a sin 7 /1 —cost
Hy(p,0) = — T o
2 \/1+seaa (sec? @ — cos® 1)
.6ika sec aeikp cos (0#1)dT
1 k tan o sin 7
27 2 (sec?a — cos’7)
,e—ika cos Te'z'kp cos (B—«r)dT. (62)

For kp>>1, (61) and (62) are evaluated asymptotically
to yield the following result for the radiation field:

gt/ k sin? 6

E ) = e e“—ika sec 0

e, 6) v/ 2mkp l:(sec2 a — cos?0)

tan? 1 — cosf
& \/ eika sec a:l (63)
/14 seca (sect o — cos? 6)
) R O [ tan « sin 0 /1 — cos b

H,{(p,0) = e e |

Py V2rkp 2 L1+ seca  (sec?a — cos?6)

" tan « sin 0
_6zca SeC @

¢~ ika cos 9} . (()4)

(sec? & — cos? 6)
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Hence, the outward power flow per unit area at an angle
6 is obtained from (36), (63) and (64) as
S=pEXH"=|E|*+ | H,|?
k |: sin? ¢
B 8mp L(sec® @ — cos?f)
tan? o (1 — cosd) )
—_— | (63)
(1 4 sec @) (sec?a — cos?8)

Therefore, the total radiated in the region z>0 is ob-
tained as

E (" sin? @
A
8rJ o LL(sec? @ — cos? )

tan? @ (1 — cos 6)

(1 + seca) (sec?a — cos %)

jl dg. (66)

By evaluating the integral in (66), in the same manner
as in (58), it is found that

k sin «
P, = ~(:1———————}.
8 (1 4 cos @)

Using (67) and (60), the launching efficiency is ob-
tained as

(67)
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Fig. 4—Efficiency of excitation vs a.
sin 1 — cosaT?
1+—F-
2 sin o
Mmax = — N . 9
sin o sin « 1 — cosa?
BRI BEET
14 cosa 2 sin «
sin a{1l + sin «)
(69)

- Zl‘—{— cos @) (2 — cos a) .

The value of #..x is plotted in Fig. 4 as a function of a.
It is seen that fmax increases nearly linearly with a.
It is to be noted that it is not physically meaningful to
have the line source in the plane of screen for a=x/2.

sin a 1~ cosa 1—cose .
1+—4+2 ————sin (2ka sec o)
) 2 1+ cosa 14 cosa (68)
7= . X ——————
sin « sin « 1+ cosa /1 —cosa .
-t _— ,V ———— sin (2ka sec a)
14 cosa 2 1+ cosa 14 cosa

The power in the surface wave is maximized if a is
chosen such that 2ke sec a=Qm—1)r/2 (m is an
integer) and the maximum value of the launching effi-
ciency becomes
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